If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2=343
We move all terms to the left:
7n^2-(343)=0
a = 7; b = 0; c = -343;
Δ = b2-4ac
Δ = 02-4·7·(-343)
Δ = 9604
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9604}=98$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-98}{2*7}=\frac{-98}{14} =-7 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+98}{2*7}=\frac{98}{14} =7 $
| 6y-2=2/5 | | (2x-4)(3x-8)=0 | | 615^2+473.71^2=c^2 | | 72^2+320^2=c^2 | | 72^2+320^3=c^2 | | 210^2+176^2=c^2 | | 229.84^2+461.37^2=c^2 | | 374^2+168^2=c^2 | | 90^2+216^2=c^2 | | 190^2+336^2=c^2 | | 80^2+192^2=c^2 | | 192^2+256^2=c^2 | | 84^2+80^2=c^2 | | 91^2+60^2=c^2 | | 180=80+(4x-32) | | 1/3x=6/8 | | 29-3m=20 | | -x^2=-12 | | H=4f=12 | | (434.031/x)-1=-0.09 | | 2(5)^2x+3=12 | | 200x=5x | | .46x=20x | | 16/35=20/x | | 16/35=20.5/x | | 90x+7=60x+10 | | 14*(2x+2)=12(2x+5) | | 6*6=5(5+x) | | 6x6=5(5+x) | | -x*12=-52 | | F(x)=2x+0.5 | | 20-2x=-1+0.5x |